 The Migration to Service Oriented Architecture (SOA)

Overview

Based on limitation of most companies’ current architecture, there is a need to provide a more reliable, unified, standardized, and cost effective integration strategy. Current maintenance and enhancement efforts of legacy systems are too lengthy and too costly. Companies should start looking for an alternative architecture that will provide a competitive edge among its competitors and at the same time provide a unified integration infrastructure.
Our Technical Approach

Step I
Assessment of the Service Oriented Architecture (SOA)
In this step we will address the key activities that we will perform for the analysis and the design required to build a Service-Oriented Architecture (SOA). We strongly stress the importance of addressing the techniques required for the identification, specification and realization of services, their flows and composition, as well as the enterprise-scale components needed to realize and ensure the quality of services required of a SOA. Service-oriented modeling requires additional activities and artifacts that are not found in traditional object-oriented analysis and design (OOAD).
Service-Oriented Architecture: The Conceptual Model
This concept is based on an architectural style that defines an interaction model between three primary parties: the service provider, who publishes a service description and provides the implementation for the service, a service consumer, who can either use the uniform resource identifier (URI) for the service description directly or can find the service description in a service registry and bind and invoke the service. The service broker provides and maintains the service registry.
A meta-model showing these relationships is depicted in Figure 1 below.

Figure 1: Conceptual model of a SOA architectural style

SOA Architectural Principles
The architecture style defining a SOA describes a set of patterns and guidelines for creating loosely coupled, business-aligned services that, because of the separation of concerns between description, implementation, and binding, provide unprecedented flexibility in responsiveness to new business threats and opportunities.
SOA is an enterprise-scale IT architecture for linking resources on demand. In a SOA, resources are made available to participants in a value net, enterprise or any line of business (typically spanning multiple applications within an enterprise or across multiple enterprises). It consists of a set of business-aligned IT services that collectively fulfill an organization’s business processes and goals.
Guiding Principles

· Reuse, granularity, modularity, composability, and componentization
· Compliance to standards (both common and industry-specific)
· Services identification and categorization, provisioning and delivery, and monitoring and tracking
Specific Architectural Principles

· Encapsulation
· Separation of business logic from the underlying technology
· Single implementation and enterprise-view of components
· Leveraging existing assets wherever an opportunity exists
· Life cycle management
· Efficient use of system resources
· Service maturity and performance
By understanding the principles of the SOA style of architecture and design, along with the benefits of those principles to the business and IT communities, we can determine the applicability of SOA when designing a solution. These principles drive certain characteristics that are essential to the design of a service. A service is a software resource (discoverable) with an externalized service description. This service description is available for searching, binding, and invocation by a service consumer. The service provider realizes the service description implementation and also delivers the quality of service requirements to the service consumer. Services should ideally be governed by declarative policies and thus support a dynamically re-configurable architectural style.
Figure 2: Attributes of a SOA
[image: image1.png]

Business agility is gained by IT systems that are flexible, primarily by separation of interface, implementation, and binding (protocols) offered by a SOA, allowing the deferral of the choice of which service provider to opt for at a given point in time based on new business requirements, (functional and non-functional (for example, performance, security, scalability, and so forth) requirements).
We can reuse the services across internal business units or across the value chains among business partners in a fractal realization pattern. Fractal realization refers to the ability of an architectural style to apply its patterns and the roles associated with the participants in its interaction model in a composite manner. We can apply it to one tier in architecture and to multiple tiers across the enterprise architecture. Among projects, it can be between business units and business partners within a value chain in a uniform and conceptually scalable manner.
Service Oriented Modeling
We will introduce the high-level activities of identification, specification and realization, and some artifacts of service-oriented modeling. Service-oriented modeling is a service-oriented analysis and design (SOAD) process for modeling, analyzing, designing, and producing a SOA that aligns with business analysis, processes, and goals.
First, we will take a look at what we intend to build, namely a SOA and its layers. Then we will describe how to build the SOA by discussing the main activities and techniques that we will need to create a SOA. In order to migrate to a SOA, we will need some additional elements that go beyond service modeling. These include:
Adoption and Maturity Models. Where is US Trust at in the relative scale of maturity in the adoption of SOA and Web Services? Every different level of adoption has its own unique needs.
Assessments. Do we have some pilots? Has US Trust dabbled into Web services? How good is the resulting architecture (ESB)? Should we keep going in the same direction? Will this scale to an enterprise SOA? Have we considered everything we need to consider?
Strategy & Planning Activities. How do we plan to migrate to a SOA? What are the steps, tools, methods, technologies, standards, and training we will need to take into account? What is the roadmap and vision, and how do we will get there? What’s the plan?
Governance. Should existing API or capability become a service? If not, which ones are eligible? Every service should be created with the intent to bring value to the business in some way. How do you manage this process without getting in the way?
Best Practices. What are some tried and tested ways of implementing security, ensuring performance, compliance with standards for interoperability, designing for change?
SOA Template
An abstract view of SOA depicts it as a partially layered architecture of composite services that align with business processes.
The relationship between services and components is that enterprise-scale components (large-grained enterprise or business line components) realize the services and are responsible for providing their functionality and maintaining their quality of service. Business process flows can be supported by choreography of these exposed services into composite applications.
Integration architecture supports the routing, mediation, and translation of these services, components, and flows using an Enterprise Service Bus (ESB). The deployed services must be monitored and managed for quality of service and adherence to non-functional requirements.
For each of these layers, we will make design and architectural decisions. Therefore, to help document SOA, we will create a document consisting of sections that correspond to each of the layers.
Figure 3: The layers of a SOA

[image: image2.png]Presentation Fortets WeRP

=
Business Process
Choreography @ @' C>.

o0 NGO D00

Composit Serves

Enterprise -
Components T

Projec o Enterpise Components

Gescomon — —r—

P v -
L «—d::.-n_$| ||| etpece

BuLouuON

‘smpsjY oG
2 wewebeuel unoes 'S0

SOA Document Blue Print- Our deliverable document will include

Scope: what area of the enterprise is this architecture for?
Some key questions for defining an appropriate governance structure

· What are the advantages that the client can take from this engagement?
· What are the client's objectives and expectations?
· What roles, responsibilities, structures, and procedures already exist at the client site for IT planning, steering, and decision-making?
· How can skill and leadership competency be developed?
· What principles and guidelines are necessary to optimize the alignment of business and IT?
· What is the appropriate way to structure how business and IT will interact so as to both maintain consistency and keep flexibility enough to quickly adapt to new changes?
· What standardization of services, service definitions, and descriptions is appropriate?
· How can services and service providers be controlled and measured? Who should monitor, define, and authorize changes to existing services?
· How should you decide on the sourcing strategy of services?
· What problems exist and how can the engagement support the client?
Operational systems layer:

Packaged applications, Custom applications - Architectural decisions
Enterprise Components Layer:

· Functional areas supported by this enterprise component
· Business domains, goals and processes, which are supported
· Decisions regarding governance
· Criteria by which something is elected as an enterprise components- Architectural decisions
Services layer:

Categorized portfolio of services - Architectural decisions
Business Process and Composition Layer:

· Business processes to be represented as choreographies
· Which processes need to be soft-wired into choreographies?
· Which processes will be built into applications?
Access or Presentation Layer:
· Implications of the Web services and the SOA architecture on this layer. For example, the use of port lets that invoke Web services at the user interface level and the implications on the functioning of that layer
Integration Layer:

· Considerations of ESB
· How are we going to ensure the service-level agreements (SLAs) and Quality of Service (QOS) required by clients of the services provided?
Additional Topics will be addressed:

· Security issues and decisions
· Performance issues and decisions
· Technology and standards limitations and decisions
· Monitoring and management of services
· Description and decisions
Step II

Evaluation and Recommendation on the Status of the Enterprise Service Bus (ESB)
The backbone of SOA is the Enterprise Service Bus (ESB). ESB provides the infrastructure to register services, to route events/requests to the appropriate service provider, and to transform incoming XML messages. The biggest benefit of ESB is to make integration efforts declarative and not developmental. US Trust will be able to register new services with ESB, swap obsolete services, monitor business activities, and most importantly create a unified integration pattern for either existing applications or external trading partners/clients.
Initial Validation Testing

The main purpose of the initial test is to perform end-to-end test for the ESB infrastructure across all layers (not real business case). It will simply validate ESB infrastructure and provide a comfort level to US Trust. For instance, this test will include a generation of some file from Advantage, ESB will receive an FTP event based on that file, ESB will route this event to some service provider, a message will be transformed into “copybook” format, and a legacy component will be invoked either as a scheduled task or as batch program.
How we will check the Capabilities of the Existing ESB

Communication
· Check if Incoming requests can be routed to outgoing partner links.
· Check if there is support for communication using Web services SOAP over HTTP and SOAP over JMS, RMI over IIOP, Java and JMS.
· Check if there is support for event-based calls.
· Check if there is Synchronous and Asynchronous support for process and activity interfaces.
Service Interaction
· Check if WSDL interface is defined for each BPEL4WS process, and each activity within a BPEL4WS process.
· Check if Service providers can be substituted without changing the process structure.
· Check if there is any support provided for UDDI registries.
Integration
· Check if there is support for J2EE Connector Architecture resource adapters to connect to enterprise information systems such as CICS Transaction Server and IMS.
· Check if there is support for multiple transports, as defined by binding settings in WSDL definitions. Service aggregation can be achieved using parallel process paths and data mapping.
Service level
· Check if Processes can contain multi-threaded, parallel execution paths.
· Check if multiple server instances can be scaled using standard WebSphere clustering techniques.
Quality of Service (QOS)
· Check if Business process instances are persisted and can survive a server restart or failure.
· Check if Business processes can leverage J2EE transaction support.
· Check if Compensation can be used to compensate transactions that have already committed, or to compensate activities that cannot be rolled back due to their non-transactional nature.
· Check if Support of JMS implemented with WebSphere MQ allows assured message delivery.
Security
· Check if there is support for J2EE.
· Check if Process-level authorization can be set, with roles resolved by a pluggable user registry.
Message Processing
· Check if XML message structures can be transformed using XSLT.
· Check if Message and data structures can be transformed, aggregated, correlated and validated using Java code snippets.
· Check if Elements in a data structure can be populated using an assign activity, if no data transformation is required.
Management and Autonomic
· Check if Business Process Web Client provides full administration of business process templates and instances.
· Check if Process instances can be monitored in the Business Process Web Client, or using the Business Process Engine API.
· Check if Server-related administration provided in the Administrative Console.
· Check if Process interfaces can be registered in a directory, such a UDDI.
· Check if Logging and tracing facilities provided.
Modeling
· Check if Broad support for data formats, including SOAP.
· Check if Development and deployment tooling is provided with WebSphere Studio Application Developer Integration Edition.
Infrastructure Intelligence
· Check if Business Rules Beans support allows business rules to be dynamically changed at runtime without modifying or redeploying a process.
Step III

3.1 Requirements and Analysis
Good requirements and analysis practices help reduce project risk and keep the project running smoothly until the final product is successfully delivered. Defining the right tools that will help the team understand the business problem, capture and manage evolving requirements, model user interactions, defining database architecture, and incorporate stakeholder feedback throughout the project lifecycle are key factors for successful implementation.
Business Analyst: Tasked with understanding and representing stakeholder needs, leading and coordinating the collection and verification of customer and business needs, documenting and organizing the requirements for a system, and communicating requirements to an entire team. Other titles or roles that might do these tasks are systems analysts, project mangers, program managers, or product managers. Skills: Rational RequisitePro and WebSphere Business Integration Modeler
Application Architect: Responsible for creating and maintaining the overall structure and layout of a software system's components and their interfaces within and outside the system. Skills: Rational RequisitePro, Rational Software Modeler and Rational Software Architect.
Systems Architect: Responsible for analyzing the role of the system in the broader enterprise, defining the requirements the system needs to meet, in terms of services and nonfunctional requirements, and defining the architecture of the system to meet the requirements. Skills: Rational RequisitePro, Rational Software Modeler.
Database Designer/Modeler: Responsible for leading the coordination and collection of database requirements, documenting, organizing, and communicating the requirements for the database, modeling the database architecture, and ensuring it supports the business needs. Skills: Rational RequisitePro and Rational Rose Data Modeler.

3.2 Design and Implementation
WABILITY intends to use Rational products, which provides tools for architecture, design modeling, construction, model-driven development, architecting rapid application development (RAD), component testing, and runtime analysis activities. These tools help developers maximize their productivity when building business applications, software products and systems

The following products targeted specifically for design and construction activities will be analyses and used:

· Rational Software Architect: Helps developers creating applications for the Java platform or in C++ that leverages model-driven development with the UML and unifies all aspects of software application architecture.

· Rational Software Modeler: UML-based visual modeling and design tool for architects, systems analysts, and designers who need to ensure that their specifications, architecture, and designs are clearly defined and communicated to their stakeholders.

· Rational Application Developer for WebSphere Software: A comprehensive IDE that enables developers to quickly design, develop, analyze, test, profile, and deploy Web, Web services, Java, J2EE, and portal applications.
3.3 Process Management
WABILITY recommends the use of the Rational Unified Process, or RUP Methodology. RUP is a software development process platform based on proven best practices that are configurable to meet projects' needs. The comprehensive IT methods and planning and estimation tools of Rational SUMMIT Ascendant complement the proven RUP guidance for developing quality software.
Rational Suite is a comprehensive solution that includes the Team Unifying Platform capabilities, plus visual modeling, code-generation, and runtime analysis capabilities. This solution can help to better plan, manage, and measure IT and development projects across the enterprise.
3.4 Configuration Management
Regulatory compliance, standards enforcement and IT governance requirements heighten the need for robust software configuration management process. As a result a comprehensive, integrated software configuration management solutions that will streamline and automate change across the application life cycle is a must for the success of this project.
3.5 Quality Management
Building quality into an application involves an iterative process and a set of tools to help team members automate error-prone aspects of their work, freeing them to focus on creativity and value. WABILITY recommends the use of a tool that will address the needs to build the required business application.
The following products are examples of automated system testing tools that WABILITY Consultants are expert at:
Rational Functional Tester: An advanced, automated functional and regression testing tool for testers and GUI developers who need superior control for testing Java, VS.NET and Web-based applications.
Rational Performance Tester: A performance test creation, execution and analysis tool for teams validating the scalability and reliability of complex e-business applications before deployment.
Rational Robot: A testing tool for centralized QA teams who want to automate the functional and performance testing of applications based on a variety of client/server GUI technologies.
Rational Team Unifying Platform: Integrates all the testing activities for one application with centralized test management, defect tracking, and version control.
Step IV
Incorporation of WebSphere Business Integration Server V5 into the SOA under the use of ESB

In the diagram shown below, the following products are recommended for implementing an ESB as part of a service-oriented architecture:
· WebSphere MQ
· Web Services Gateway
· WebSphere Business Integration Event Broker
· WebSphere Business Integration Message Broker
[image: image3.png]Development Platiorm

Business Performance Management Services

|_[— - e
| B e
EEEas
Fopiostoyan Do Ao
CE) Parner Business Senvices
Application

\ e gpicsc T T

@-(EH Business Application and Data Service

e ST TR

Enerprise Appicatons and Data

Figure 4. Business Integration reference architecture

In this architecture, WebSphere Business Integration Server Foundation can be used to implement Process Services, choreographing services provided on the ESB. We should recognize that this technology itself contains ESB capabilities. Indeed base ESB capabilities, such as protocol management, are required, and others such as transformation may also be provided. Therefore any Process Services technology should by definition provide some level of ESB capability coupled with process integration capability.
WebSphere Business Integration Server implements both Process Services and ESB functionality. For example, in WebSphere Business Integration Server Foundation there is the inclusion of WebSphere MQ, WebSphere Business Integration Event Broker, and the Web Services Gateway.
It is worth bearing in mind that for certain solutions the ESB capabilities embedded in WebSphere Business Integration Server Foundation will prove sufficient for required purposes. These capabilities will be coupled with process integration functionality in an SOA.
An organization's requirements can be met by a simpler infrastructure, which may be achieved using a single technology. This would reduce operational resource requirements. The ESB can contain flow logic as part of its mediations, though it does not typically contain business process logic or manage business state. Both of these are characteristics of the Process Services component. However WebSphere Business Integration Server Foundation can execute flow logic without managing business state.
There is important architectural principle, which must be applied when using a common technology for multiple architectural components, in this case the ESB and Process Services components. There must be a clean interface between the ESB mediations and the process flows defined, for example a WSDL definition. Therefore both process flows and mediation flows for the ESB will exist. Each will be independent of the other, accessed only through defined interfaces. If a clean interface is not architected and implemented between the components, then the benefits of using an ESB in an SOA will not be achieved, maintenance costs will soar and flexibility will be lost.
Adopting this principle in WebSphere Business Integration Server Foundation requires careful business process design. Business processes built for WebSphere Business Integration Server Foundation will use the Business Process Execution Language for Web Services (BPEL4WS) open standard. BPEL4WS can be used to model business process flow logic.
Step V

Design and Implementation of the four Selected Services
The design strategy for a SOA does not start from the “bottom-up" as is often the case with a Web services-based approach. SOA is more strategic and business-aligned. Web services are a tactical implementation of SOA. A number of important activities and decisions exist that influence not just integration architecture but enterprise and application architectures as well. They include the activities from the two key views of the consumer and provider described in Figure 5 below.
Figure 5 below, shows the activities that are typically conducted by each of the roles of provider and consumer. Note that the provider’s activities are a superset of the consumer’s activities (for example, the provider would also be concerned with service identification, categorization, and so forth).
In many cases, the differentiation of the roles comes from the fact that the consumers specify the services they want, often search for it, and once they are convinced of the match between the specification of the service they are looking for, and that provided by a service provider, they bind and invoke the service as needed. The provider then needs to publish the services they are willing to support; both in terms of functionality and most importantly in terms of the QOS that consumers will require.
[image: image4.png]Provder | Component | Component | Senice [Service Standards
view dentfcation | specifcaton | realzation | management | implementation
. srchitectursl
e eto | averngthe | Tochmical [product decsions
aocations o | oA protoyping [selecton | (state, fow,
P dependencies)

Figure 5: Activities of service-oriented modeling
The activities described above can be depicted to flow within the service-oriented modeling and architecture method, as shown in Figure 6 below.
[image: image5.png]r Goal-service &
Identiication M modeling analysi

component flow| CERE

‘specification specifcation
information message & event
specification ‘specification
Service realization decisions:
Realization Service allocation

e component layer

The process of service-oriented modeling and architecture consists of three general steps:
· Identification,
· Specification and
· Realization of Services, Components and Flows (typically, choreography of services).

Service Identification
This process consists of a combination of top-down, bottom-up, and middle-out techniques of domain decomposition, existing asset analysis, and goal-service modeling. In the top-down view, a blueprint of business use cases provides the specification for business services. This top-down process is often referred to as domain decomposition, which consists of the decomposition of the business domain into its functional areas and subsystems, including its flow or process decomposition into processes, sub-processes, and high-level business use cases. These use cases often are very good candidates for business services exposed at the edge of the enterprise, or for those used within the boundaries of the enterprise across lines of business.
In the bottom-up portion of the process or existing system analysis, existing systems are analyzed and selected as viable candidates for providing lower cost solutions to the implementation of underlying service functionality that supports the business process. In this process, you analyze and leverage API’s, transactions, and modules from legacy and packaged applications. In some cases, componentization of the legacy systems is needed to re-modularize the existing assets for supporting service functionality.
The middle-out view consists of goal-service modeling to validate and unearth other services not captured by either top-down or bottom-up service identification approaches. It ties services to goals and sub-goals, key performance indicators, and metrics.
Service Classification or Categorization
This activity is started when services have been identified. It is important to start service classification into a service hierarchy, reflecting the composite or fractal nature of services: services can and should be composed of finer-grained components and services.
Classification helps determine composition and layering, as well as coordinates building of interdependent services based on the hierarchy. Also, it helps alleviate the service proliferation syndrome in which an increasing number of small-grained services get defined, designed, and deployed with very little governance, resulting in major performance, scalability, and management issues. More importantly, service proliferation fails to provide services, which are useful to the business, that allow for the economies of scale to be achieved.
Subsystem Analysis
This activity takes the subsystems found above during domain decomposition and specifies the interdependencies and flow between the subsystems. It also puts the use cases identified during domain decomposition as exposed services on the subsystem interface. The analysis of the subsystem consists of creating object models to represent the internal workings and designs of the containing subsystems that will expose the services and realize them. The design construct of “subsystem" will then be realized as an implementation construct of a large-grained component realizing the services in the following activity.
Component Specification
In the next major activity, the details of the component that implement the services are specified:
· Data
· Rules
· Services

· Configurable profile
· Variations
· Messaging and events specifications and management definition occur at this step.
Service Allocation
Service allocation consists of assigning services to the subsystems that have been identified so far. These subsystems have enterprise components that realize their published functionality. Often you make the simplifying assumption that the subsystem has a one-to-one correspondence with the enterprise components. Structuring components occurs when you use patterns to construct enterprise components with a combination of:
· Mediators
· Façade
· Rule objects
· Configurable profiles
· Factories
Service allocation also consists of assigning the services and the components that realize them to the layers in the SOA. Allocation of components and services to layers in the SOA is a key task that requires the documentation and resolution of key architectural decisions that relate not only to the application architecture but also to the technical operational architecture designed and used to support the SOA realization at runtime.
Service Realization
This step recognizes that the software that realizes a given service must be selected or custom built. Other options that are available include integration, transformation, subscription and outsourcing of parts of the functionality using Web services. In this step we make the decision as to which legacy system module will be used to realize a given service and which services will be built from the “ground-up". Other realization decisions for services include: security, management and monitoring of services. Top-down domain decomposition (process modeling and decomposition, variation-oriented analysis, policy and business rules analysis, and domain specific behavior modeling is conducted in parallel with a bottom-up analysis of existing legacy assets that are candidates for componentization (modularization) and service exposure.

Step VI

Testing

Initial unit testing will be done for each service. A test plan will be developed and further testing based on the selective test cases will be performed prior to delivery. Each service is going to be tested by our QA team and end users. At least one cycle of user acceptance testing is required for a successful delivery of the project. A well-coordinated and successful UAT is a win-win situation for both IT and business.
